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Abstract

We examined whether variants in genes related to sex hormone biosynthesis and metabolism were 

associated with hypospadias in humans. We examined 332 relatively common tagSNPs in 20 

genes. Analyses included 633 cases (84 mild, 322 moderate, 212 severe, 15 undetermined 

severity) and 855 population-based non-malformed male controls born in California from 1990–

2003. We used logistic regression models to estimate odds ratios (OR) and 95 percent confidence 

intervals (CI) for each SNP. Several of the 332 studied SNPs had p<0.01: one in CYP3A4, four in 

HSD17B3, one in HSD3B1, 2 in STARD3 10 in SRD5A2 and seven in STS. In addition, haplotype 

analyses gave several associations with p<0.01. For HSD17B3, 14-SNP and 5-SNP blocks had 

ORs of 1.5 (95% CI 1.1, 2.0, p<0.001) and 2.8 (95% CI 1.6, 4.8, p<0.001), respectively. For 

SRD5A2, 9-SNP, 3-SNP and 8-SNP blocks had ORs of 1.7 (95% CI 1.3, 2.2, p<0.001), 1.4 (95% 

CI 1.1, 1.8, p=0.008) and 1.5 (95% CI 1.2, 1.9, p=0.002), respectively. Our study indicates that 

several genes that contribute to sex hormone biosynthesis and metabolism are associated with 

hypospadias risk.

INTRODUCTION

Hypospadias is a common congenital malformation in which the urethral meatus is on the 

ventral side of the penis. Familial patterns suggest that genetic factors substantially 

contribute to its etiology (Schnack and others, 2008). Normal urethral closure, which occurs 

during the 8th–14th weeks of gestation, involves a continuous process of ventral fusion in the 

proximal to distal direction (Kurzrock and others, 1999; Seifert and others, 2008; Van Der 

Werff and others, 2000). This process requires fetal synthesis of testosterone, conversion to 

dihydrotestosterone (DHT), DHT binding to the androgen receptor (AR), and appropriate 

AR signaling. Estrogens, as well as progesterone, may interfere with this process in the fetus 

(Kim and others, 2004; Manson and Carr, 2003; Wright and others, 1983). We therefore 
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hypothesized that variability in genes that contribute to fetal sex hormone biosynthesis and 

metabolism is associated with hypospadias risk. In particular, we hypothesize that lower 

testosterone or DHT levels or higher estrogen or progesterone levels would be associated 

with increased risk.

Many genes contribute to these pathways, and several have been examined by previous 

studies of hypospadias. SRD5A2 is critical to conversion of testosterone to DHT in the 

urethral seam, and its variants have been associated with hypospadias in several small 

studies (Makridakis and others, 2000; Samtani and others, 2011; Sata and others, 2010; Thai 

and others, 2005) but not in one larger study (van der Zanden and others, 2010). Small 

studies have also suggested that variants in CYP17A1 (Qin and others, 2012; Samtani and 

others, 2010), HSD3B2 (Codner and others, 2004), HSD17B3 (Sata and others, 2010), and 

CYP1A1 (Kurahashi and others, 2005) are associated with hypospadias.

We examined whether variants in 20 genes that contribute to sex hormone synthesis and 

metabolism were associated with hypospadias (Table 1). Specifically, we examined over 

300 relatively common variants in a large population of California male infants. Several of 

the genes have been examined previously for an association with hypospadias (as noted 

above) but most have not.

METHODS

The study population included all male infants born from 1990–2003 to mothers who were 

residents of eight California Central Valley counties (Fresno, Kern, Kings, Madera, Merced, 

San Joaquin, Stanislaus, and Tulare counties) and from 1990–1997 (7/1/1990–12/31/1997) 

to mothers who were residents of Los Angeles, San Francisco, and Santa Clara counties, 

reflecting counties where case ascertainment was actively being conducted by the California 

Birth Defects Monitoring Program (CBDMP). CBDMP staff ascertained cases by reviewing 

medical records at hospitals and genetic centers in the relevant California counties (Croen 

and others, 1991).

Cases were classified by severity, which was based on the reported anatomical position of 

the urethral opening. Mild cases were those for which the meatus was limited to the coronal 

or glanular penis (British Pediatric Association [BPA] codes 752.605, 752.625), moderate 

cases were those for which the meatus was on the penile shaft, and severe cases were those 

for which the meatus was at the peno-scrotal junction or perineal area (BPA codes 752.606, 

752.607, 752.626, 752.627). Assignment of severity was finalized based on review by a 

medical geneticist (EJL or Dr. Cynthia Curry) (Carmichael and others, 2003). Cases for 

which the anatomical position was described as “not otherwise specified” (BPA codes 

752.600, 752.620) were excluded. Cases having a known single gene disorder or 

chromosomal abnormality were excluded.

The underlying study population included 1,246,172 non-malformed live born male infants 

eligible for control selection. We randomly selected 931 controls with available newborn 

bloodspots for study, in proportion to the underlying birth population for that year, to give 

an approximate 2:1 ratio of controls to cases from Central Valley counties and a 1:1 ratio 
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from non-Central Valley counties. The ratio differed due to the presence of a secondary on-

going study in the Central Valley that allowed for a larger control group. No control infant 

had a structural birth defect.

For cases and controls, information on the following descriptive covariates was derived from 

birth certificates: maternal race-ethnicity, education, age, and parity; plurality; and infant 

birthweight and gestational age at delivery. Cases and controls were linked with archived 

newborn bloodspots, which served as the source of DNA for genotyping. In total, 667 (88% 

of eligible) cases and 931 (93% of eligible) controls were available for genotyping.

Genomic DNA was extracted from bloodspots using MasterPure™ Complete DNA and 

RNA Purification Kit (Epicentre Biotechnologies Madison, WI) and 10 ng genomic DNA 

was then used for whole genome amplification (Qiagen Repli-g® kit). TagSNPs that assay 

known common SNPs either directly or indirectly via linkage disequilibrium among 

measured and unmeasured SNPs were selected using the Genome Variation Server (http://

gvs.gs.washington.edu/GVS/). The program provided tagSNPs that cover common variation 

at r2>0.80 across each candidate gene for a “cosmopolitan” population, including Hispanics. 

TagSNPs with minor allele frequencies (MAF) >10% were selected. SNPs were genotyped 

using a custom multiplex Illumina GoldenGate assay.

We started with 380 SNPs from the candidate genes in the GoldenGate assay. We excluded 

29 SNPs for which the data indicated poor clustering of results and 2 SNPs with a call rate 

<90%. We also excluded 106 subjects (32 cases, 74 controls) with sample call rates <90%, 

leaving 635 cases (84 mild, 323 moderate, 213 severe, 15 unknown) and 857 controls for 

analyses. We then undertook a Hardy-Weinberg equilibrium test for each SNP among 

controls, which resulted in excluding 17 additional SNPs (p-value <0.005 among non-

Hispanic whites or Hispanics), leaving 332 SNPs for analysis. All 3 SNPs for CYP21A2 

were excluded. The genes and number of SNPs per gene are described in Table 1.

We genotyped 106 ancestry informative marker (AIM) SNPs that were selected to 

discriminate Native American, African, and European ancestry (Choudhry and others, 2010; 

Gamboa-Melendez and others, 2012; Risch and others, 2009; Via and others, 2010). Four of 

the 106 AIMs were excluded because they had a call rate lower than 90%. To estimate 

individual ancestry estimates among cases and controls, we used the program Structure 2.1 

(Falush and others, 2003; Pritchard and others, 2000). Structure was run using the admixture 

model with unlinked markers, with 50,000 burn-in iterations and 50,000 further iterations. 

We assumed three ancestral populations. Structure provided variables reflecting the 

proportions of Native American, African and European ancestry for each case or control. 

Given that the three proportions sum to one, we only incorporated two (Native American 

and African) into our analyses to adjust for potential population stratification.

We used logistic regression to examine the association of each candidate gene SNP with risk 

of hypospadias, comparing the homozygous and heterozygous variant genotypes with the 

homozygous wildtype genotype (the more frequent allele among all controls was designated 

as wildtype). We considered results to be significant if they had p<0.01. We considered the 

possibility for heterogeneity of results across ethnic groups by comparing risks among self-

Carmichael et al. Page 3

Andrology. Author manuscript; available in PMC 2015 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://gvs.gs.washington.edu/GVS/
http://gvs.gs.washington.edu/GVS/


identified non-Hispanic white and Hispanic subjects by examining models restricted to these 

two groups that contained product terms to estimate interaction (interaction was not assessed 

for “other” race-ethnicity, because it was a smaller group and heterogeneous). For SNPs for 

which the overall p-value for the product term was less than 0.10 (n=12), we focused on 

stratified results. We conducted analyses of all cases grouped together as well as separate 

analyses by severity of phenotype (mild, moderate, severe).

For the fifteen genes for which there were more than 5 SNPs (COMT, CYP11A1, CYP17A1, 

CYP19A1, CYP3A4, HSD17B2, HSD17B3, HSD3B1, HSD3B2, SRD5A1, SRD5A2, 

STARD3, STS, SULT1E1, SULT2A1), we examined haplotypes. We used Haploview 4.2 to 

determine the LD structure in the region and to define the haplotype blocks and their 

frequencies based on all subjects’ genotypes (Barrett and others, 2005). The most common 

haplotype was the reference. Maximum likelihood estimates of odds ratios and their 

corresponding 95% confidence intervals (CI) were calculated from logistic regression 

models to estimate relative risks.

We also evaluated genetic risk scores created by combining high-risk SNPs. For each 

individual we counted the number of genes in which they carried an associated variant 

(based on p<0.01 as our criterion). For variants with ORs<1, the reference genotype 

(homozygous wildtype) was scored as the risk genotype. We calculated scores overall and 

separately by severity (applying the p-value criterion within each group, such that a different 

set of variants was scored within each group).

All odds ratios were adjusted for the two ancestral proportion variables and for maternal 

residence in the Central Valley (yes/no) due to the differing case-control ratio based on this 

variable that was inherent to the study design. In addition, non-stratified results were 

adjusted for maternal race-ethnicity (Hispanic, non-Hispanic white, or other). Two cases and 

two controls had missing race-ethnicity, such that SNP-based analyses included 855 controls 

and a maximum 633 cases (84 mild, 322 moderate, 212 severe, 15 uncertain after clinician 

review, which were included only in the analyses of all cases together).

RESULTS

Case mothers were more likely than control mothers to be non-Hispanic white, more highly 

educated, older, and nulliparous (Table 2). Cases were more likely to be low birthweight and 

delivered before 37 weeks of gestation.

Several SNPs had p<0.01 for at least one comparison (Table 3). One CYP3A4 SNP was 

associated with increased risk, specifically for moderate hypospadias. For four HSD17B3 

SNPs, the heterozygous phenotypes were associated with risk, for moderate and severe 

hypospadias. For three of these SNPs, the odds ratios were even higher for the homozygous 

genotype (2- to 3-fold increased risk), but confidence intervals included one, likely due to 

smaller sample sizes for these comparisons. One HSD3B1 SNP and two STARD3 SNPs were 

associated with risk; results varied between whites and Hispanics and by severity. Ten 

SRD5A2 SNPs were associated. As with HSD17B3, odds ratios were particularly high 
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among moderate and severe cases, and for the homozygous genotypes. Seven STS SNPs 

were associated with risk; results tended to be elevated regardless of severity.

High linkage disequilibrium was present among some of the SNPs reported in Table 3. For 

HSD17B3 the pair-wise R-squared values for three of the four SNPs ranged from 0.72 to 

0.99; values for the fourth SNP (rs2026001) were all 0.06. For SRD5A2, R-squared values 

ranged from 0.54–0.95, with the exception of rs725631 and rs765138 (range 0.01–0.17). 

The R-squared for the two STARD3 SNPs was low (0.03). For STS SNPs, the range was 

0.54–0.98.

Haplotype analyses among the overall study population gave even stronger results. In 

particular, for HSD17B3, 14-SNP and 5-SNP blocks had odds ratios of 1.5 (95% CI 1.1, 2.0, 

p<0.001) and 2.8 (95% CI 1.6, 4.8, p<0.001), respectively (Table 4). For SRD5A2, 9-SNP, 

3-SNP and 8-SNP blocks had odds ratios of 1.7 (95% CI 1.3, 2.2, p<0.001), 1.4 (95% CI 

1.1, 1.8, p=0.008) and 1.5 (95% CI 1.2, 1.9, p=0.002), respectively.

Based on the risk scores, a higher number of genes with risk-associated SNPs corresponded 

with higher ORs (Table 5). For example, among moderate cases a score of one or two was 

associated with a 2-fold increased risk, whereas a score of three was associated with a 4.5-

fold increased risk.

DISCUSSION

This study indicates that SNPs in several genes that contribute to sex hormone biosynthesis 

and metabolism are associated with risk of hypospadias – CYP3A4, HSD17B3, HSD3B1, 

SRD5A2, STARD3 and STS. However, the study did not indicate that SNPs in several other 

genes contribute to hypospadias – COMT, CYP11A1, CYP17A1, CYP19A1, CYP1A1, 

CYP21A2, CYP3A7, HSD17B1, HSD17B2, HSD3B2, SRD5A1, STAR, SULT1E1, and 

SULT2A1. Our discussion focuses on our findings for the six genes with significant results 

and the three additional genes that have been studied previously but were not significant in 

our study (CYP1A1, CYP17A1, and HSD3B2).

CYP1A1 contributes to the 2-hydroxylation of estrogens, which yields less estrogenic 

metabolites than the 4- and 16-alpha hydroxylation catalyzed by CYP3A4 (Kurahashi and 

others, 2005). Two previous studies have examined two known functional polymorphisms in 

CYP1A1 (rs4646903 and rs1048943). A study of 31 Japanese cases reported a protective 

association with rs4646903 (Kurahashi and others, 2005), whereas a study of 80 Indian 

cases did not provide evidence for association with rs4646903 or rs1048943 (Shekharyadav 

and others, 2011). Our study included rs1048943, as well as three other CYP1A1 SNPs, but 

found no evidence of association. We did observe an increased risk with one CYP3A4 SNP 

for moderate cases. A study of 98 Japanese cases did not find evidence for an association 

with variants in CYP1A1 or CYP3A4 (Qin and others, 2012).

HSD17B3 is responsible for conversion of androstenedione to testosterone. One study 

examined five SNPs in HSD17B3 among 89 Japanese cases (Sata and others, 2010). The 

SNP rs2066479 (+913G>A) was associated with increased risk, regardless of severity; the 

OR for the GA genotype was 1.5 (95% CI 0.9, 2.4), and for the AA genotype it was 3.1 
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(95% CI 1.4, 6.8). Our study included 56 HSD17B3 SNPs. Three were associated with 

increased hypospadias risk; associations were strongest for the homozygous variant 

genotype and among moderate to severe cases. We did not include rs2066479 in our study, 

but we were able to obtain data on its R-squared value with one of our associated SNPs, 

rs12552648, from dbSNP; the R-squared value was near one. In our study, rs12552648 

variant genotypes were associated with increased risk of moderate and severe hypospadias. 

One of our studied SNPs was associated with reduced hypospadias risk, and two haplotype 

blocks were also associated with increased risk.

HSD3B1 and HSD3B2 are important for synthesis of androgens and progesterone. HSD3B2 

mutations lead to impaired gonadal steroidogenesis and undermasculinized genitalia 

(Codner and others, 2004). HSD3B1 has a similar function as HSD3B2 but is the major form 

expressed in the placenta (Pezzi and others, 2003; Simard and others, 2005). In the current 

study, one of six SNPs in HSD3B1 was associated with hypospadias, particularly among 

moderate cases; none of the five HSD3B2 SNPs was associated. A study in Chile observed 

missense mutations in HSD3B2 in two of 90 isolated moderate/severe hypospadias cases, 

versus none among 100 “healthy fertile male controls” (Codner and others, 2004).

SRD5A2 is critical to the conversion of testosterone to DHT in the urethral seam. The V89L 

polymorphism (rs523349 or +336G>C) has been associated with hypospadias in four small 

studies (Samtani and others, 2011; Sata and others, 2010; Thai and others, 2005; Wang and 

others, 2004) but not one large study (van der Zanden and others, 2010). The C allele 

confers substantial reduction in enzyme activity (Samtani and others, 2010). In our study, 

several SRD5A2 SNPs were associated with hypospadias risk, but rs523349 did not make 

the p<0.01 cut-off. Among all cases, the OR for rs523349 was 1.1 (95% CI 0.8, 1.3) for the 

CG genotype and 0.8 (95% CI 0.6, 1.1) for the CC genotype, relative to GG. For mild cases, 

the respective ORs were 1.3 and 1.3, and for moderate cases, 1.0 and 1.0. For severe cases, 

the respective ORs were 1.0 (95% CI 0.7, 1.4) and 0.5 (95% CI 0.3, 0.9, p=0.012). 

Explanation of the differences across studies for this SNP is unknown. ORs for the SRD5A2 

SNPs that did make our p<0.01 cut-off tended to be strongest for the homozygous variant 

genotypes.

The first and rate-limiting step in sex steroid biosynthesis is the conversion of cholesterol to 

pregnenolone, which involves STARD3 (Tuckey and others, 2004). We observed an 

association of two of six STARD3 SNPs with hypospadias, one with a 3-fold increased risk 

of severe hypospadias, and one with reduced risk of moderate and severe hypospadias; both 

results were only observed among Hispanics. STS contributes to the synthesis of 

biologically active estrogens. Seven of 20 SNPs we studied were associated with modestly 

(1.4-fold) increased risk of hypospadias. We are unaware of previous studies of hypospadias 

and genetic variation of STARD3 or STS. CYP19A1 catalyzes the last steps of estrogen 

synthesis. Its SNPs were not associated with hypospadias in our study, nor in another small 

study (Qin and others, 2012).

CYP17A1 (p450c17) is key to synthesis of androgens, estrogens and progestins (Miller, 

2002). Case reports suggest that mutations in CYP17 or reduced CYP17 activity may be 

associated with hypospadias and male pseudohermaphroditism (Ammini and others, 1997; 
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Sherbet and others, 2003). Two small studies among Indian subjects examined the 

functional CYP17A1 polymorphism rs743572; one reported increased risk (Samtani and 

others, 2010), whereas the other did not (Yadav and others, 2011). A small study of 

Japanese subjects reported an association of rs17115149 with hypospadias (Qin and others, 

2012; Samtani and others, 2010). Our study did not provide evidence of an association of 

hypospadias with nine CYP17A1 SNPs, including rs743572; we did not include rs17115149 

in our study.

In summary, of the six genes with results that we considered significant (see Table 3), two 

contribute to estrogen metabolism or synthesis (CYP3A4, STS), three contribute to androgen 

synthesis (HSD17B3, HSD3B1, SRD5A2), and one is more generally involved in steroid 

synthesis (STARD3). Thus, they represent multiple aspects of sex hormone synthesis and 

metabolism. However, we do not know the actual functional consequences of the studied 

SNPs, since most tagSNPs are intronic.

The strengths of this study include its size, population-based controls, ancestry informative 

markers, and examination of multiple genes that contribute to a specific pathway. Many of 

the genes we examined have not been studied previously for their contribution to 

hypospadias, or if they have, previous studies tend to be small in number of subjects and 

variants investigated. Our approach of highlighting results with p<0.01 rather than a more 

conservative statistical criterion minimizes Type II errors (false negatives), but the trade-off 

is an increased possibility of false positive results (Type I error). Given that we had an a 

priori hypothesis about the studied genes, and most have not been studied extensively if at 

all in the context of hypospadias, this seemed an appropriate trade-off for the presentation of 

results. However, some of our results may be false positives, since the p-value criterion of 

<0.01 was not very conservative relative to the large number of comparisons we made. 

Thus, we emphasize the need for replication of our findings in additional study populations. 

Under-ascertainment of mild cases is a potential limitation of this study but would not alter 

the associations we observed for moderate or severe hypospadias. We considered all cases in 

our study regardless of whether they had other accompanying congenital malformations; 

most cases did not have other malformations and thus those with other malformations are 

unlikely to have driven our results. Our approach of investigating tagSNPs was justified 

given that it captures the majority of genetic variation and is cost-efficient, and that minimal 

examination of the studied genes in humans preceded the current study. However, many 

tagSNPs are intronic and have no known functional consequences. The SNPs we genotyped 

include one non-synonymous exonic SNP (STARD3 rs1877031) and two 3′-UTR 

(untranslated region) SNPs (SRD5A2 rs1042578 and rs9332975). Thus, some of the 

observed associations could be driven by linkage disequilibrium with other less common, 

unmeasured variants that do have functional (but still uncertain) consequences. In addition, 

several of the associations we have reported were for SNPs that were in relatively high 

disequilibrium and are therefore unlikely to be independent. Our study investigated 

confounding by race-ethnicity as well as effect modification for Hispanics versus non-

Hispanic whites. A limitation of our study is the small numbers of subjects with other race-

ethnicities, such as Asian or Pacific Islander.
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In conclusion, this study observed substantial evidence for an association of hypospadias 

with certain genes that contribute to sex hormone biosynthesis and metabolism, especially 

HSD17B3, SRD5A2, and STS. Further studies are needed to verify these results and identify 

potential underlying causal variants.
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Figure 1. 
Candidate genes from the sex steroid biosynthesis pathway.

DHEA = Dehydroepiandrosterone, DHEAS = DHEA-sulfate, see Table 1 for gene names
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Table 1

Genes included in analyses.

Gene symbol Gene name Role Number of 
SNPs 

analyzed (332 
total)

COMT catechol-O-methyltransferase Inactivates estrogens 19

CYP11A1 cytochrome P450, family 11, subfamily A, polypeptide 
1

Conversion of cholesterol to pregnenolone 5

CYP17A1 cytochrome P450, family 17, subfamily A, polypeptide 
1

Conversion of pregnenolone and progesterone 9

CYP19A1 cytochrome P450, family 19, subfamily A, polypeptide 
1

Conversion of androgens to estrogens 64

CYP1A1 cytochrome P450, family 1, subfamily A, polypeptide 1 Contributes to the 2-hydroxylation of estrogens 4

CYP3A4 cytochrome P450, family 3, subfamily A, polypeptide 4 Contributes 4- and 16a-hydroxylation of 
estrogens

9

CYP3A7 cytochrome P450, family 3, subfamily A, polypeptide 7 Contributes to fetal supply of androgen 
precursors of estrogens by generating 16OH-
DHEAS, the major precursor for placental 
estriol synthesis

3

HSD17B1 hydroxysteroid (17-beta) dehydrogenase 1 Inter-conversion of estrogens and androgens, 
e.g., conversion of estrone to estradiol

1

HSD17B2 hydroxysteroid (17-beta) dehydrogenase 2 Inter-conversion of estrogens and androgens; 
e.g., conversion of estradiol to estrone

51

HSD17B3 hydroxysteroid (17-beta) dehydrogenase 3 Inter-conversion of estrogens and androgens 56

HSD3B1 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and 
steroid delta-isomerase 1

Interconversion of androgens and progesterone-
related hormones

6

HSD3B2 hydroxy-delta-5-ster0oid dehydrogenase, 3 beta- and 
steroid delta-isomerase 2

Interconversion of androgens and progesterone-
related hormones

5

SRD5A1 steroid-5-alpha-reductase, alpha polypeptide 1 Isoform of SRD5A2 22

SRD5A2 steroid-5-alpha-reductase, alpha polypeptide 2 Conversion of testosterone to 
dihydrotestosterone

31

STAR steroidogenic acute regulatory protein Conversion of cholesterol to pregnenolone 1

STARD3 StAR-related lipid transfer (START) domain containing 
3

Conversion of cholesterol to pregnenolone 6

STS steroid sulfatase (microsomal), isozyme S Contributes to placental generation of estriol by 
catalyzing conversion of sulfated steroid 
precursors to estrogens

20

SULT1E1 sulfotransferase family 1E, estrogen-preferring, member 
1

Inactivates estrogens by sulfoconjugation 13

SULT2A1 sulfotransferase family, cytosolic, 2A, DHEA-
preferring, member 1

Conversion of DHEA to DHEAS 7
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Table 2

Descriptive characteristics of cases with hypospadias (n=633) and non-malformed controls (n=855).

Percent of Controls (n) Percent of Cases (n)

Maternal race-ethnicity

 White 31 (262) 43 (275)

 Hispanic 52 (443) 35 (221)

 Others 18 (150) 22 (137)

Maternal education

 < High school 39 (335) 26 (162)

 High school 31 (264) 27 (173)

 > High school 29 (249) 47 (296)

 Unknown 1 (7) <1 (2)

Maternal age

 < 25 years 46 (395) 30 (189)

 25–34 years 43 (365) 52 (331)

 35 or more years 11 (95) 18 (113)

Number of previous live births

 0 36 (309) 52 (331)

 1 32 (276) 26 (163)

 ≥ 2 32 (270) 22 (137)

 Unknown 0 (0) <1 (2)

Infant birthweight

 ≤ 2500 g 5 (42) 30 (192)

 > 2500 g 95 (813) 70 (441)

Gestational age at delivery

 < 37 weeks 7 (60) 23 (143)

 ≥ 37 weeks 89 (758) 74 (468)

 Unknown 4 (37) 3 (22)

Maternal residence in Central Valley

 No 45 (385) 63 (394)

 Yes 55 (470) 37 (239)
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